3.79 \(\int \frac{\sqrt{c+d x^2}}{(a+b x^2) \sqrt{e+f x^2}} \, dx\)

Optimal. Leaf size=102 \[ \frac{c^{3/2} \sqrt{e+f x^2} \Pi \left (1-\frac{b c}{a d};\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{c f}{d e}\right )}{a \sqrt{d} e \sqrt{c+d x^2} \sqrt{\frac{c \left (e+f x^2\right )}{e \left (c+d x^2\right )}}} \]

[Out]

(c^(3/2)*Sqrt[e + f*x^2]*EllipticPi[1 - (b*c)/(a*d), ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (c*f)/(d*e)])/(a*Sqrt[d]
*e*Sqrt[c + d*x^2]*Sqrt[(c*(e + f*x^2))/(e*(c + d*x^2))])

________________________________________________________________________________________

Rubi [A]  time = 0.0326949, antiderivative size = 102, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 32, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.031, Rules used = {539} \[ \frac{c^{3/2} \sqrt{e+f x^2} \Pi \left (1-\frac{b c}{a d};\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{c f}{d e}\right )}{a \sqrt{d} e \sqrt{c+d x^2} \sqrt{\frac{c \left (e+f x^2\right )}{e \left (c+d x^2\right )}}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[c + d*x^2]/((a + b*x^2)*Sqrt[e + f*x^2]),x]

[Out]

(c^(3/2)*Sqrt[e + f*x^2]*EllipticPi[1 - (b*c)/(a*d), ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (c*f)/(d*e)])/(a*Sqrt[d]
*e*Sqrt[c + d*x^2]*Sqrt[(c*(e + f*x^2))/(e*(c + d*x^2))])

Rule 539

Int[Sqrt[(c_) + (d_.)*(x_)^2]/(((a_) + (b_.)*(x_)^2)*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[(c*Sqrt[e +
 f*x^2]*EllipticPi[1 - (b*c)/(a*d), ArcTan[Rt[d/c, 2]*x], 1 - (c*f)/(d*e)])/(a*e*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sq
rt[(c*(e + f*x^2))/(e*(c + d*x^2))]), x] /; FreeQ[{a, b, c, d, e, f}, x] && PosQ[d/c]

Rubi steps

\begin{align*} \int \frac{\sqrt{c+d x^2}}{\left (a+b x^2\right ) \sqrt{e+f x^2}} \, dx &=\frac{c^{3/2} \sqrt{e+f x^2} \Pi \left (1-\frac{b c}{a d};\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{c f}{d e}\right )}{a \sqrt{d} e \sqrt{c+d x^2} \sqrt{\frac{c \left (e+f x^2\right )}{e \left (c+d x^2\right )}}}\\ \end{align*}

Mathematica [C]  time = 0.230414, size = 143, normalized size = 1.4 \[ -\frac{i \sqrt{\frac{d x^2}{c}+1} \sqrt{\frac{f x^2}{e}+1} \left (a d \text{EllipticF}\left (i \sinh ^{-1}\left (x \sqrt{\frac{d}{c}}\right ),\frac{c f}{d e}\right )+(b c-a d) \Pi \left (\frac{b c}{a d};i \sinh ^{-1}\left (\sqrt{\frac{d}{c}} x\right )|\frac{c f}{d e}\right )\right )}{a b \sqrt{\frac{d}{c}} \sqrt{c+d x^2} \sqrt{e+f x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[c + d*x^2]/((a + b*x^2)*Sqrt[e + f*x^2]),x]

[Out]

((-I)*Sqrt[1 + (d*x^2)/c]*Sqrt[1 + (f*x^2)/e]*(a*d*EllipticF[I*ArcSinh[Sqrt[d/c]*x], (c*f)/(d*e)] + (b*c - a*d
)*EllipticPi[(b*c)/(a*d), I*ArcSinh[Sqrt[d/c]*x], (c*f)/(d*e)]))/(a*b*Sqrt[d/c]*Sqrt[c + d*x^2]*Sqrt[e + f*x^2
])

________________________________________________________________________________________

Maple [A]  time = 0.018, size = 191, normalized size = 1.9 \begin{align*}{\frac{1}{ab \left ( df{x}^{4}+cf{x}^{2}+de{x}^{2}+ce \right ) } \left ({\it EllipticF} \left ( x\sqrt{-{\frac{d}{c}}},\sqrt{{\frac{cf}{de}}} \right ) ad-{\it EllipticPi} \left ( x\sqrt{-{\frac{d}{c}}},{\frac{bc}{ad}},{\sqrt{-{\frac{f}{e}}}{\frac{1}{\sqrt{-{\frac{d}{c}}}}}} \right ) ad+{\it EllipticPi} \left ( x\sqrt{-{\frac{d}{c}}},{\frac{bc}{ad}},{\sqrt{-{\frac{f}{e}}}{\frac{1}{\sqrt{-{\frac{d}{c}}}}}} \right ) bc \right ) \sqrt{{\frac{f{x}^{2}+e}{e}}}\sqrt{{\frac{d{x}^{2}+c}{c}}}\sqrt{f{x}^{2}+e}\sqrt{d{x}^{2}+c}{\frac{1}{\sqrt{-{\frac{d}{c}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x^2+c)^(1/2)/(b*x^2+a)/(f*x^2+e)^(1/2),x)

[Out]

(EllipticF(x*(-d/c)^(1/2),(c*f/d/e)^(1/2))*a*d-EllipticPi(x*(-d/c)^(1/2),b*c/a/d,(-f/e)^(1/2)/(-d/c)^(1/2))*a*
d+EllipticPi(x*(-d/c)^(1/2),b*c/a/d,(-f/e)^(1/2)/(-d/c)^(1/2))*b*c)/b*((f*x^2+e)/e)^(1/2)*((d*x^2+c)/c)^(1/2)*
(f*x^2+e)^(1/2)*(d*x^2+c)^(1/2)/a/(-d/c)^(1/2)/(d*f*x^4+c*f*x^2+d*e*x^2+c*e)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{d x^{2} + c}}{{\left (b x^{2} + a\right )} \sqrt{f x^{2} + e}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)^(1/2)/(b*x^2+a)/(f*x^2+e)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(d*x^2 + c)/((b*x^2 + a)*sqrt(f*x^2 + e)), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)^(1/2)/(b*x^2+a)/(f*x^2+e)^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c + d x^{2}}}{\left (a + b x^{2}\right ) \sqrt{e + f x^{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x**2+c)**(1/2)/(b*x**2+a)/(f*x**2+e)**(1/2),x)

[Out]

Integral(sqrt(c + d*x**2)/((a + b*x**2)*sqrt(e + f*x**2)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{d x^{2} + c}}{{\left (b x^{2} + a\right )} \sqrt{f x^{2} + e}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)^(1/2)/(b*x^2+a)/(f*x^2+e)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(d*x^2 + c)/((b*x^2 + a)*sqrt(f*x^2 + e)), x)